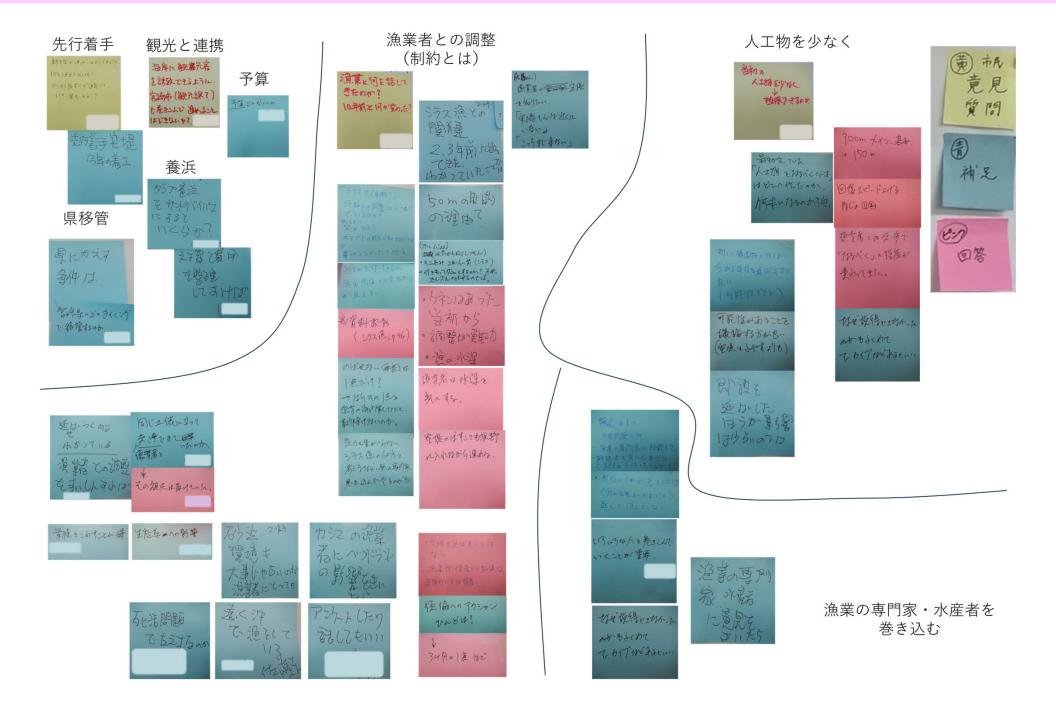
資料3

第59回 宮崎海岸市民談義所 資料集

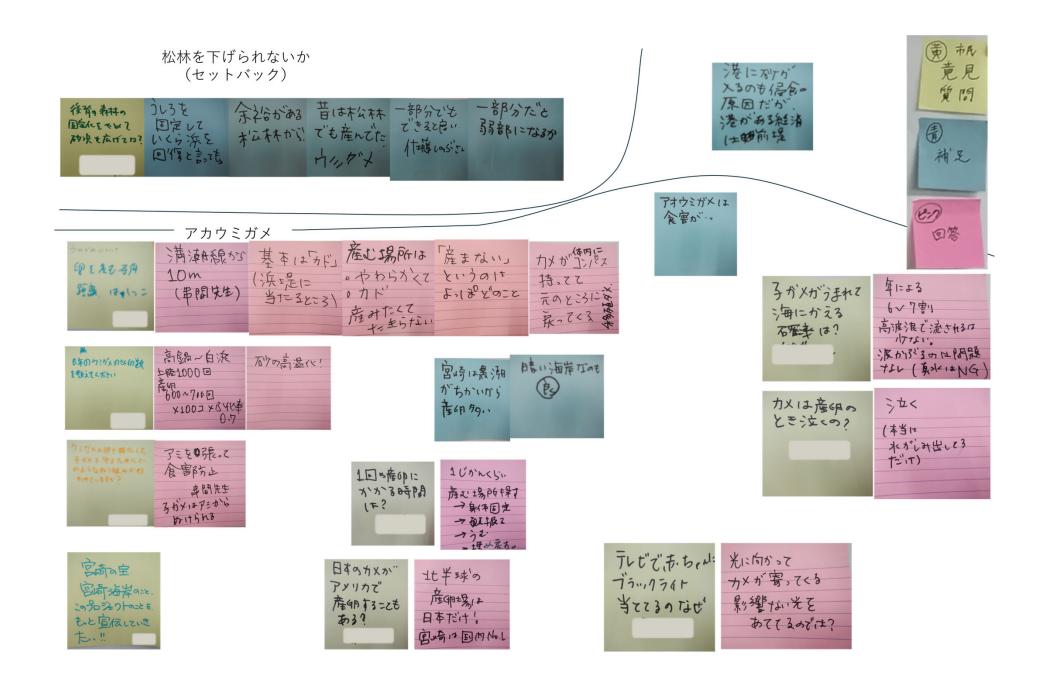
日時:令和7年9月20日(土)13時~16時


場所:宮崎市佐土原総合支所2階研修室

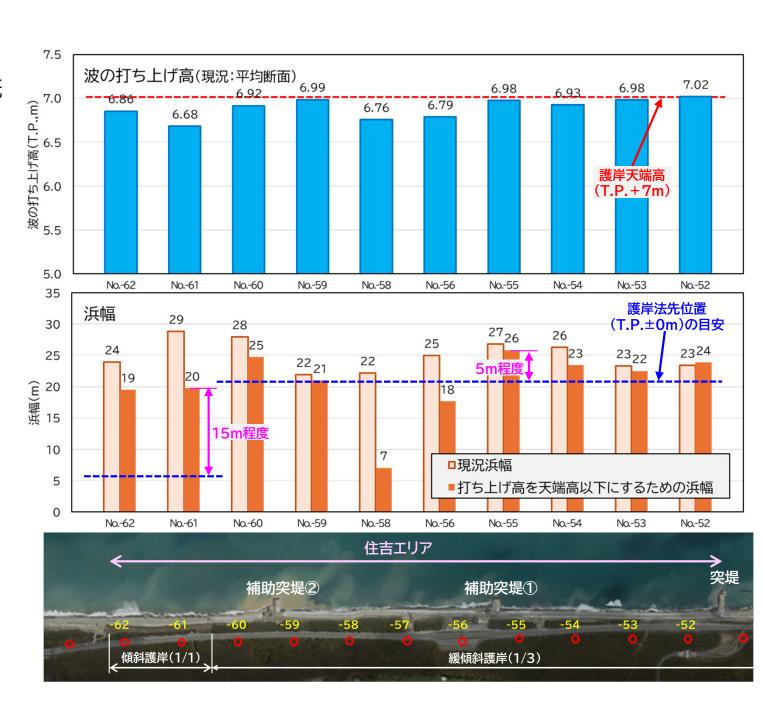
国土交通省宮崎河川国道事務所・宮崎県

資料集目次

1. 第58回宮崎海岸市民談義所での意見	2
2. 住吉エリアの現状の安全性	6
(1)波の打ち上げ高と浜幅	6
(2)最大の打ち上げ高を与える波浪	8
(3)汀線の短期変動の検討	9
(4)気候変動による海面上昇の影響	13


1. 第58回市民談義所での意見(1)談義テーマ:事業の進め方

1. 第58回市民談義所での意見 (2)談義テーマ:技術的なこと



1. 第58回市民談義所での意見(3)談義テーマ: そのほかなんでも

2. 住吉エリアの現状の安全性(1)波の打ち上げ高と浜幅

- ・現況の波の打ち上げ高は T.P.+7m前後であり、護岸 天端高(T.P.+7m)よりも概 ね低くなっている。
- ・緩傾斜堤(1/3勾配)区間の 護岸法先位置は21m程度で あり、護岸法先よりも5m程 度の砂浜があれば打ち上げ 高は護岸天端高以下となる。
- ・傾斜堤(1/1勾配)区間の護 岸法先位置は6m程度であ り、護岸法先よりも15m程 度の砂浜があれば打ち上げ 高は護岸天端高以下となる。

参考:波の打ち上げ高の算定条件

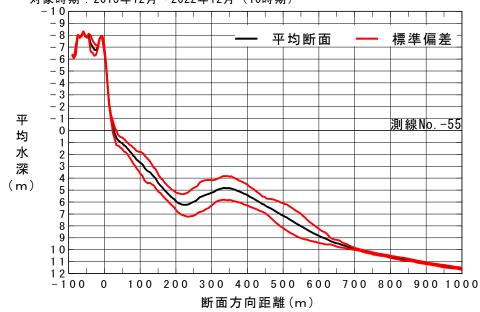
●潮位

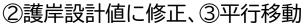
T.P.+2.42m(計画高潮位)

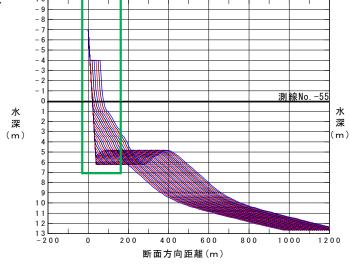
●波高

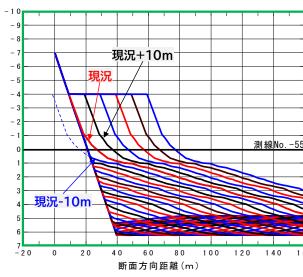
1.0~11.49m(計画換算沖波波高) (0.5m間隔)

●周期

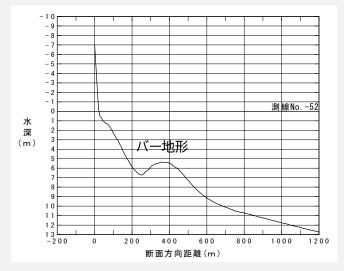

11.0~15.0s(計画換算沖波周期) (0.5~1.0s間隔)

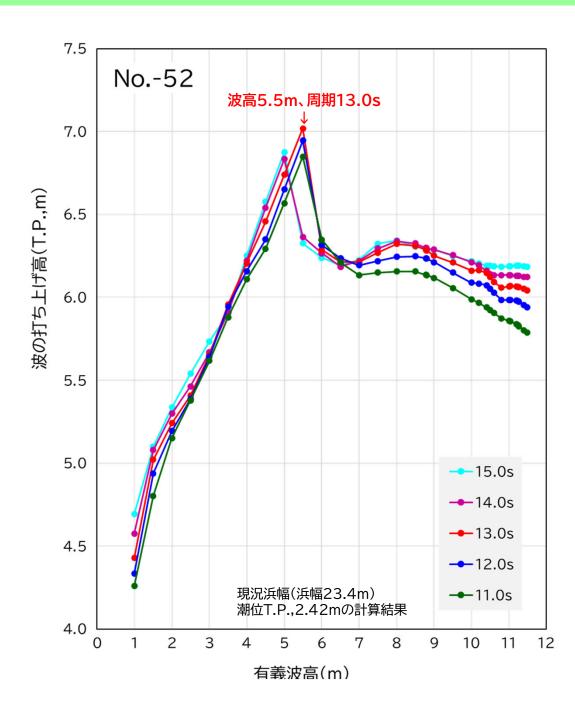

●算定断面地形


- ①近10年間の冬季の測量成果 2013(H25)年12月~ 2022(R4)年12月,10回分)を用い、 各測線の平均断面地形を作成
- ②平均断面地形の汀線位置について、+ 50m~-200mの範囲を10m間隔で 移動して地形を作成 護岸より陸側には後退しないため、全 面水深の低下で表現


①平均断面地形の作成

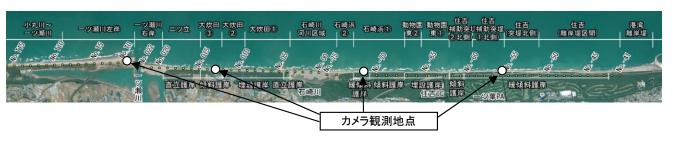
対象時期: 2013年12月~2022年12月(10時期)

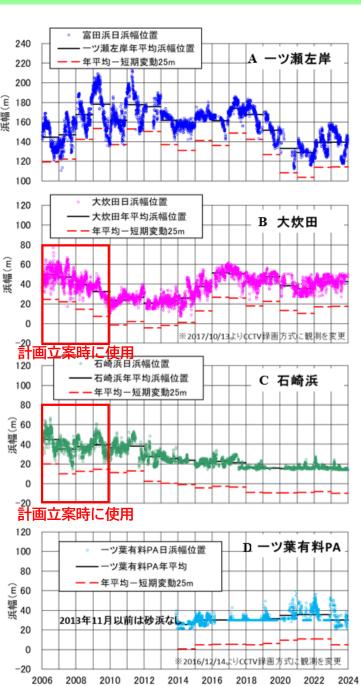

2. 住吉エリアの現状の安全性(2)最大の打ち上げ高を与える波浪


- ・波の打ち上げ高は、その地形の特性により波高・周期に比例して高くならない場合※があり、宮崎海岸はこのケースに該当する。
- ・住吉エリアの現況で最も波の打ち上げ高が高くなる測線はNo.-52(突堤北側の測線)であり、この場合、波高5.5m・周期13.0sの組合せの時に波の打ち上げ高が最大となる。

●打ち上げ高最大を与える波高・周期

	測線No.									
	-62	-61	-60	-59	-58	-56	-55	-54	-53	-52
波高(m)	5.5	5.5	6.0	5.5	5.0	5.0	5.0	5.0	5.0	5.5
周期(s)	14.5	14.0	12.0	13.5	13.5	13.0	14.6	13.5	14.6	13.0


※No.-52の断面地形には沖合にバーが発達している。このバーにより波高6m以上の波浪は砕波するため、波の打ち上げ高は低くなる。



2. 住吉エリアの現状の安全性 (3)汀線の短期変動の検討

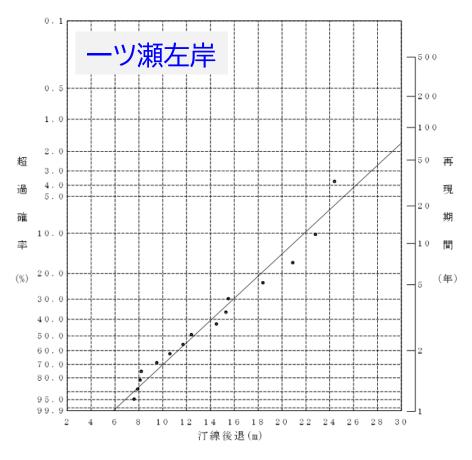
- ・当初計画では2006~2009年の4年間のカメラ観測による日汀線(日浜幅)データより、短期変動幅を25mと設定※している
- ・その後もカメラ観測を継続しており、現時点では2006~2 023年の18年間のデータが蓄積されている
- ・2006~2023年の18年間の日汀線データをみると、変動 傾向は、2006~2009年の4年間と顕著に変化していない
- ・日汀線の変化による極値統計解析では、30年確率で25m程 度となっている
- ・前進側からの累加百分率でみると、99%超過は一ツ瀬左岸・大炊田ともに-10m/日、99.9%超過は一ツ瀬左岸・大炊田ともに-18m/日となっている
- ※年間の平均浜幅を算定し、この年間の平均浜幅mと年最小浜幅との差分の4年間の最大値を短期変動幅(25m)と設定

参考:日汀線変化の出現状況

- ・汀線変化量は+10~-10m/日の範囲が大部分を占めている。
- ・前進側からの累加百分率でみると99%超過は一ツ瀬左岸・大炊田ともに-10m/日、99.9% 超過は一ツ瀬左岸・大炊田ともに-18m/日となっている。

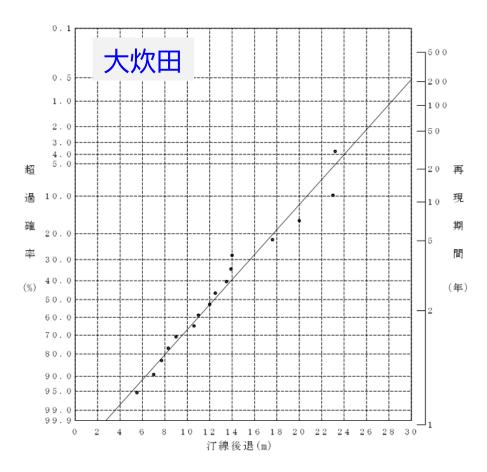
日あたり汀線	泉変化量		出現	度数		累加出現度数			累加百分率				
範囲	代表値	ーツ瀬左岸	大炊田	石崎浜	ーツ葉PA	ーツ瀬左岸	大炊田	石崎浜	ーツ葉PA	ーツ瀬左岸	大炊田	石崎浜	ーツ葉PA
-29m∼-27m	-28m	0	0	0	0	4928	4777	4574	2285	100.00%	100.00%	100.00%	100.00%
-27m∼-25m	-26m	0	0	0	0	4928	4777	4574	2285	100.00%	100.00%	100.00%	100.00%
-25m~-23m	-24m	2	1	0	0	4928	4777	4574	2285	100.00%	100.00%	100.00%	100.00%
-23m~-21m	-22m	1	2	0	0	4926	4776	4574	2285	99.96%	99.98%	100.00%	100.00%
-21m∼-19m	-20m	1	1	0	0	4925	4774	4574	2285	99.94%	99.94%	100.00%	100.00%
-19m∼-17m	-18m	2	4	0	0	4924	4773	4574	2285	99.92%	99.92%	100.00%	100.00%
-17m∼-15m	-16m	5	3	0	0	4922	4769	4574	2285	99.88%	99.83%	100.00%	100.00%
-15m∼-13m	-14m	8	5	2	0	4917	4766	4574	2285	99.78%	99.77%	100.00%	100.00%
-13m∼-11m	-12m	16	21	8	4	4909	4761	4572	2285	99.61%	99.67%	99.96%	100.00%
-11m∼-9m	-10m	29	26	8	10	4893	4740	4564	2281	99.29%	99.23%	99.78%	99.82%
-9m∼-7m	-8m	61	86	26	14	4864	4714	4556	2271	98.70%	98.68%	99.61%	99.39%
-7m∼-5m	-6m	126	156	65	38	4803	4628	4530	2257	97.46%	96.88%	99.04%	98.77%
-5m∼-3m	-4m	371	406	212	73	4677	4472	4465	2219	94.91%	93.62%	97.62%	97.11%
-3m∼-1m	-2m	977	928	686	232	4306	4066	4253	2146	87.38%	85.12%	92.98%	93.92%
-1m~1m	0m	1804	1538	2572	1589	3329	3138	3567	1914	67.55%	65.69%	77.98%	83.76%
1m∼3m	2m	895	960	682	200	1525	1600	995	325	30.95%	33.49%	21.75%	14.22%
3m∼5m	4m	374	341	199	71	630	640	313	125	12.78%	13.40%	6.84%	5.47%
5m~7m	6m	123	159	68	31	256	299	114	54	5.19%	6.26%	2.49%	2.36%
7m∼9m	8m	65	74	24	11	133	140	46	23	2.70%	2.93%	1.01%	1.01%
9m∼11m	10m	21	24	11	8	68	66	22	12	1.38%	1.38%	0.48%	0.53%
11m~13m	12m	22	22	6	4	47	42	11	4	0.95%	0.88%	0.24%	0.18%
13m∼15m	14m	7	11	3	0	25	20	5	0	0.51%	0.42%	0.11%	0.00%
15m∼17m	16m	3	3	1	0	18	9	2	0	0.37%	0.19%	0.04%	0.00%
17m∼19m	18m	7	3	1	0	15	6	1	0	0.30%	0.13%	0.02%	0.00%
19m∼21m	20m	3	1	0	0	8	3	0	0	0.16%	0.06%	0.00%	0.00%
21m~23m	22m	1	0	0	0	5	2	0	0	0.10%	0.04%	0.00%	0.00%
23m~25m	24m	0	0	0	0	4	2	0	0	0.08%	0.04%	0.00%	0.00%
25m~27m	26m	2	1	0	0	4	2	0	0	0.08%	0.04%	0.00%	0.00%
27m~29m	28m	2	0	0	0	2	1	0	0	0.04%	0.02%	0.00%	0.00%
29m~31m	30m	0	0	0	0	0	1	0	0	0.00%	0.02%	0.00%	0.00%
31m~33m	32m	0	1	0	0	0	1	0	0	0.00%	0.02%	0.00%	0.00%
計		4928	4777	4574	2285								

参考:年最大汀線変化の極値統計(1/2)


- ・最大後退量は一ツ瀬左岸および大炊田では25m/ 日程度となっている。
- ・日汀線変化の年最大後退量を用いた極値統計解析では、10年確率では20m/日程度、30年確率では25m/日程度となっている。

確率年	期待値(m/日)					
性 学士	一ツ瀬左岸	大炊田				
1	5.79	2.39				
2	11.27	11.51				
3	14.11	14.31				
5	17.21	17.10				
10	20.94	20.20				
20	24.34	22.83				
30	26.21	24.23				
40	27.49	25.17				
50	28.47	25.87				
自、英田米	ワイブル分布	ワイブル分布				
最適関数	(k=1.40)	(k=2.00)				
相関係数	0.984	0.984				

参考:年最大汀線変化の極値統計(2/2)


データ数 15 (18年)

最適関数 ワイブル分布

(k = 1.40)

相関係数 0.984

確率年	期待値	確率年	期待值
1	5.79	20	24.34
2	11.27	30	26.21
3	14.11	40	27.49
5	17.21	50	28.47
10	20.94		

データ数 16 (18年)

最適関数 ワイブル分布

(k = 2.00)

相関係数 0.984

確率年	期待値	確率年	期待値
1	2.39	20	22.83
2	11.51	30	24.23
3	14.31	40	25.17
5	17.10	50	25.87
10	20.20		

- ・「日本の気候変動2025,文部科学省・気象庁」によると、宮崎海岸は領域Ⅲに区分され、21世紀末までの海面上昇量は2℃上昇シナリオで約0.4mと予測されている。
- ・長期的な海岸保全対策を考えると きには現状での予測よりも汀線が後 退することを想定する必要がある
- ・なお、気候変動の影響については上位計画である「日向灘沿岸海岸保全基本計画」の更新作業が現在行われており、その検討結果を踏まえて詳細に検討する

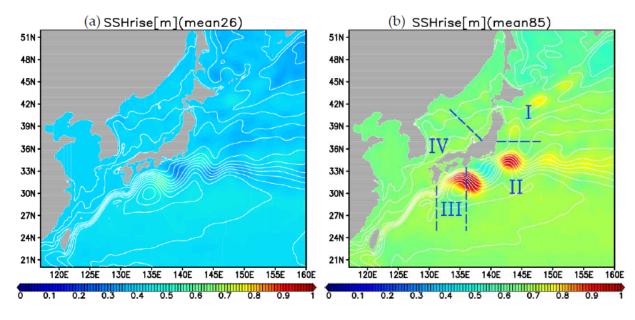


図 9.2.5 日本域海洋予測データによる 21 世紀末における日本近海の海面水位(年平均)の 20 世紀末からの上昇幅 (m)

(a) は 2° C 上昇シナリオ(RCP2.6)、(b) は 4° C 上昇シナリオ(RCP8.5)による見積もり。等値線はそれぞれの将来気候における海面水位分布を示す。

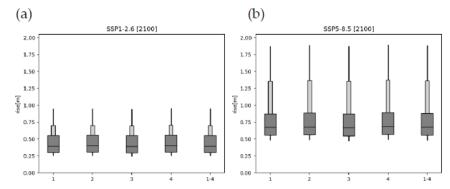


図 9.2.6 IPCC (2021) 及び日本域海洋予測データによる 21 世紀末における日本沿岸の海域 I~IV 及び 日本沿岸平均の海面水位の 20 世紀末からの上昇幅 (m)

出典:日本の気候変動2025(詳細版),文部科学省・気象庁