

第3回 筑後川堤防調査委員会

九州地方整備局 令和2年11月4日

1.第2回筑後川堤防調査委員会での指摘事項と対応

第2回筑後川堤防調査委員会での指摘事項(地質調査の拡充や浸透流解析)を踏まえた調査計 画に基づき、調査及び検討を実施した。

2. 土質調查結果報告

┥┝

変状メカニズムの推定のための基礎資料の整理や地質調査結果に基づく浸透流解析の条件設定を行った。

詳細地質調査(地質縦横断(被覆土層、帯水層の把握)、物理探査の実施、物性値の精査) 自噴箇所の微地形を想定するためのAs層上面の標高分布図作成

地下水流向流速観測

自噴箇所及び噴砂箇所でのトレンチ掘削

3. 変状要因の特定及び変状メカニズムの推定

 $\overline{}$

土質調査結果等を踏まえ、変状メカニズムの推定やそれらを根拠づける変状時外力での浸透流 解析を行い、変状時の堤防の浸透に対する安全性を照査した。また、「河川堤防の構造検討の手 引き(改訂版)」(以降、手引きと称する。)による再点検を行い、盤膨れへの対策が必要となる結 果となった。

4.対策工法の検討

「手引き」による検討の結果を踏まえ、盤膨れへの対策工法について検討した。

1. 第2回筑後川堤防調査委員会での指摘事項と対応

第2回筑後川堤防調査委員会での指摘事項、対応状況を下記に示す。

指摘事項	対応状況
Ags層の地下水より上位にある宙水、As層や Ags層における地下水位および、堤内地側の 台地における地下水位の確認。	地下水位観測、流向流速測定を5箇所(堤防、堤内 地)で実施。
現地の事象を浸透流解析で再現できるパラメー タの検討。	変状時の洪水を外力とし、被覆土層内に弱部(水み ち)を考慮した解析を実施。
事象があった地点の地盤プロファイルを、深さ方 向と平面方向について明らかにする。	変状状況調査(39k600~40k200)を実施。 以下の地質調査を実施。 ・ボーリング調査(自噴箇所、噴砂箇所) ・簡易サンプリング(堤防、堤内地) ・土質試験 ・トレンチ掘削(自噴、噴砂箇所) ・電気探査(川裏小段、500m)

1. 第2回筑後川堤防調査委員会での指摘事項と対応

【第2回筑後川堤防調査委員会の抜粋】

- ・「①39k600+10付近」に大きな自噴箇所が確認された。自噴には僅かな砂分の流出はあるものの、多量の湧水 や噴砂は確認されていない。
- ・少量の砂の流出箇所が上記箇所以外に「④39k600+120」「⑤39k600+180]「⑥39k800+120」の3箇所で確認された。 噴出した砂は、微細~細砂である。
- ・発生直後の現地調査で「②39k600+40」「③39k600+60」の2箇所で僅かな湧水も確認された。

・調査計画平面図

調査地点 (位置)	調査位置の選定理由	地質調査項目	地下水調査項目	調査地点 (位置)	調査位置の選定理由	地質調査項目	地下水調査項目
R2-No.1 (39k600+5.0 堤防肩)	変状(自噴)が激しく発生した箇所の堤 外地側の横断的な地層の分布を把握する ため。	・調査ボーリング ・標準貫入試験 ・サンプリング ・室内土質試験	 現場透水試験 水圧水位計観測 流向流速測定 室内透水試験 	R2-K18 (39k600+195.0 堤外)	旧堤防(自然堤防ではない)に近い堤外 地で、地下水変動を確認しやすいと考え られるため。 地層、地下水帯水層及び変動状況を把握 する。	・簡易サンプリング ・室内土質試験	 ・水圧水位計観測 ・流向流速測定
				50 ///0	旧堤防(自然堤防ではない)の堤内地と なる位置で、地下水変動を確認しやすい	 ・簡易サンプリング ・室内土質試験 	 水圧水位計観測 ・流向流速測定
R2-No. 2 (39k600+5.0 堤内平地)	変状(自噴)が激しく発生した箇所の堤 内地側の横断的な地層の分布や地下水帯 水層や変動状況を把握するため 上位地	 ・調査ボーリング ・標準貫入試験 ・ 索内+質試験 	 ・現場透水試験 ・室内透水試験 	R2-K19 (39k800+75.0 堤内)	と考えられるため。 地層、地下水帯水層及び変動状況を把握 する。		
	不高とこの地下水を把握するため、1箇 所で2本のボーリングにより調査する。	王乃工莫武获		R2-K20 (40k000+75.0 堤内)	変状範囲の最上流部付近の堤内地側の縦 断的な地層の分布を把握するため。 また、計画盛土法尻付近に配置すること も考慮した。	 ・簡易サンプリング ・室内土質試験 	・水圧水位計観測 ・流向流速測定
R2-No. 3	堤防漏水の可能性が考えられる、噴砂箇 所の法肩。堤体土の採取も考慮して堤防 肩部で実施する。	・調査ボーリング ・標準貫入試験 ・サンフリング	 ・現場透水試験 ・水圧水位計観測 ・流向流速測定 	R2-K1~K17	ボーリングデータの補完を行い、面的な 地層を把握するため。堤内,外の法尻箇 所及び計画盛土法尻位置を選定した。	 ・簡易サンプリング ・室内土質試験 	・掘進時の水位確認
(39k600+120.0 堤防肩)		・室内土質試験		トレンチ掘削	自噴箇所の地質的に局部的な要因がない か確認するため、噴気発生箇所の周辺で トレンチ掘削を行う。		

※地権者協議等を踏まえて、第2回筑後川堤防調査委員会で提示した調査箇所から一部追加・変更をしている。

5

- ・堤体盛土は、砂質土のBcs層と粘性土のBc層の2層から構成される。
- ・地表面の被覆土層には、砂質粘性土のAsc層と粘性土のAc層が堆積している。
- ・基礎地盤は、砂質土のAs層、礫混じり砂質土のAgs層、礫質土のDg層が堆積している。

・堤体盛土 (Bcs、Bc)と被覆土層 (Asc、Ac)の地層構成と土質工学的特性の概要

地民名	地層	物:	理特性	ŧ		カ学および透水特性		コマの状況 約径加速曲線				
地層石	記号	項目			平均	項目			平均	コアの状況	<u>私</u> 住加損田禄	記争
		N値	Ν	_	2	粘着力〔全応力〕	Ccu	(kN/m²)	6. 7		Bcs層の粒径加積曲線	堤体盛土と推察され、細粒分を
		土粒子の密度	ρs	(g/cm ³)	2. 622	粘着力〔 <mark>有</mark> 効応力〕	Ccu'	(kN/m²)	3.6			多く混入する砂質土。
		含水比	w	(%)	33. 2	内部摩擦角〔全応力〕	ϕ cu	(°)	18. 9		20	砂は、微細~細砂からなる。部
		湿潤密度	ρt	(g/cm ³)	1. 696	内部摩擦角〔有効応力〕	φ cu'	(°)	26. 7	The second is		分的に細粒分優勢となり、砂質
盛土 (砂質土)	Bos	細粒分含有率	Fc	(%)	68. 7	現場透水試験	k	(m/s)	3.10E-07	Charles and the the the		シルト状を呈す。所有に炭細片
		D20からの透水係数	k	(m/s)	6.24E-09	室内透水試験	k'	(m/s)	1.85E-08	TRACE PORT AND AND	R	を混入する
		液性限界	WL	(%)	49. 5					And the second		2/庄八 9 つ。
		塑性限界	WP	(%)	33. 9					1	D.DON D.DN D.1 1 10 100	
		塑性指数	IP	_	15. 6						数土 シルト 御砂 中砂 加砂 御理 中限 加速	
		N値	Ν	-	2. 1	粘着力	Cu	(kN/m²)	28. 5		Bc層の粒径加積曲線	堤体盛土と推察され、微細〜細
		土粒子の密度	ρs	(g/cm ³)	2. 617	内部摩擦角	φu	(°)	4. 5			砂をを不均一に混入する粘性
		含水比	W	(%)	37. 7	現場透水試験	k	(m/s)	1.03E-06	Constant of the second second	20	±.
		湿潤密度	ρt	(g/cm^3)	1. 730	室内透水試験	k'	(m/s)	1.20E-08			含水比高く軟質で、コアは指圧
盛土(粘性土)	Bc	細粒分含有率	Fc	(%)	76. 2					医血管 (1) (1) (1) (1) (1) (1)		により指が貫入する。
		D20からの透水係数	k	(m/s)	5. 30E-09					ALC		所 々に最細片を混入する
		液性限界	WL	(%)	47. 7					and the second and the second s	D	
		塑性限界	WP	(%)	31. 4						D	
		塑性指数	IP	-	16. 3						林田 シルト 御後 中後 御祭 中禄 加禄 加禄	
		N値	N	-	1. 2	粘着力	Cu	(kN/m²)	8. 5		Asc層の粒径加積曲線	微細~細砂を不均一に混入する
		土粒子の密度	ρs	(g/cm ³)	2.608	内部摩擦角	φu	(°)	5. 2	and the second se		粘性土。含水比高く軟質で、コ
		含水比	W	(%)	40. 9	庄密降伏応力	Pc	(kN/m²)	208. 2	The start of the start of the	27	アは指圧により指が貫入する。
34. 10		湿潤密度	ρt	(g/cm ³)	1. 567	圧縮指数	Cc		0. 422	and the state of the		部分的に砂分の混入量多く、シ
1 砂質粘性土層	Asc	細粒分含有率	Fc	(%)	66. 0	現場透水試験	k	(m/s)	1.49E-05			ルト質砂状を呈す。腐植物を混
		D20からの透水係数	k	(m/s)	5. 48E-09							入する。
		液性限界	WL	(%)	44. 3					the state of the state of the state		
		塑性限界	WP	(%)	32. 3					1	D. DOM D. DM D. 1 1 10 100	
		塑性指数	IP	-	12. 2							
		N值	N	-	1. 4	粘着力	Cu	(kN/m²)	18. 5		Ac層の粒径加積曲線	微細砂をブロック状に混入する
		土粒子の密度	ρs	(g/cm ³)	2. 593	内部摩擦角	φu	(°)	4. 5			粘性土。含水比高く軟質で、コ
		含水比	W	(%)	47. 9	庄密降伏応力	Pc	(kN/m²)	61.9		8.0	アは指圧により指が貫入する。
油 蒔		湿潤密度	ρt	(g/cm ³)	1.634	王縮指数	Cc		0. 415	The This and the same		部分的に砂分の混入量多い。腐
和性土層	Ac	細粒分含有率	Fc	(%)	86. 3	現場透水試験	k	(m/s)	8.99E-07	1111 12 13 19		植物を混入する。
		D20からの透水係数	k	(m/s)	1.34E-09					it interes it is	72	
		液性限界	WL	(%)	53. 7					And the second second second second		
		塑性限界	WP	(%)	36. 2							
		塑性指数	IP	-	17.5						·····································	

・基礎地盤 (As、Ags、Dg)の地層構成と土質工学的特性の概要

地屋夕	地層	物理特	性		カ学および透水特性				む車		
地宿石	記号	項目		平均	項目			平均	」, 」, の1X況	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	記爭
		N值 N	I —	6.3	粘着力	Cd	(kN/m²)	11. 5		As層の粒径加積曲線	細~中砂を主体とする砂質土。
		土粒子の密度の	s (g/cm^3)	2.696	内部摩擦角	ϕd	(°)	39.4	A REAL PROPERTY AND A REAL		含水比低く、細粒分の混入量は5
		含水比 w	v (%)	17. 7	現場透水試験	k	(m/s)	6. 31E-03		2 ⁿ	~15%程度。
N. 108		湿潤密度 p	t (g/cm^3)	1. 886							局部的に微細砂主体となり、細
21 項 砂質十層	As	細粒分含有率 F	c (%)	11.0							お分の混入量多い。
17 J		D20からの透水係数 k	((m/s)	1.36E-04					A CARL CARE AND AND	**************************************	
		液性限界 W	L (%)	_							
		塑性限界 W	P (%)	_						D DON 0.01 D.1 3246 (rm) 1 1D 10D	
		塑性指数	Р —	_						131 シルト 朝砂 中砂 製砂 師理 中華 聖華	
		N值 N	l —	11.9	現場透水試験	k	(m/s)	3. 51E-03		Ags層の粒径加積曲線	細〜粗砂を主体とし、φ2〜30mm
		土粒子の密度 ρ	s (g/cm^3)	2. 694					SECRETIO POSSILE PROPERTY CAR.		大の亜円~亜角礫を5~15%程度
		含水比 w	v (%)	11.6						2"	混入する砂質土。局部的に細粒
沖 積		湿潤密度 ρ	t (g/cm^3)	_							分の混入量多い。
礫混じり	Ags	細粒分含有率 F	c (%)	6.8					14 · 12 · 14 · 24 · 24		
砂質土層		D20からの透水係数 k	((m/s)	3. 42E-04						72 3	
		液性限界 W	L (%)	_							
		塑性限界 W	P (%)	_						D D. 001 0.1 1111 (mm) 1 10 100	
		塑性指数 [Р —	-							
		N值 N	l —	11.9	現場透水試験	k	(m/s)	1.09E-04	- In the state of	Dg層の粒径加積曲線	φ2~40mm大の亜円~亜角礫を50
		土粒子の密度の	s (g/cm^3)	2. 694							~65%程度混入する礫質土。
		含水比 w	v (%)	11.6						2 ⁷⁰	最大礫径は、φ70mm。マトリッ
34 FE		湿潤密度 p	t (g/cm ³)	_					The Constant of Section 2		クスは、シルト混じり細~中砂
で、復 碟質土層	Dg	細粒分含有率 F	c (%)	6.8					A PARK		からなる。部分的に、礫の混入
		D20からの透水係数 k	((m/s)	9.37E-04						1	量少ない。
		液性限界 W	L (%)	_							
		塑性限界 ₩	P (%)	_						0.001 0.01 0.1 <u>10.00</u> (mm) 1 00 100	
		塑性指数	Р —	-							

・地質縦断図(堤内法尻)を見直した。簡易サンプリングと物理探査結果(電気探査)より、下流側の被 覆土層(Asc層、Ac層)は厚く、上流側ではなくなる結果となった。

※新たな調査結果を反映し第2回筑後川堤防調査委員会の断面は更新している。

・地質横断図:以下に代表的な断面の土層構成を示す。

・地質横断図:以下に代表的な断面の土層構成を示す。

・地質横断図:以下に代表的な断面の土層構成を示す。

【As層上面標高分布図】 ・被覆土層(Asc層、Ac層)下面のAs層の分布標高は一様ではなく、埋没した地形として、尾根や高 まりなどの微地形などがあると推測される。被覆土層はその上位に堆積していることから、層厚 も一様ではなく、複雑に変化していると考えられる。

【地下水位観測】

- ・当該グラフは、変状発生の一因になった可能性がある地下水位変動を確認するため、地下水位観測データをとりまとめたものである。
- ・地下水位観測は5箇所で行い、「R2-No.2」地点では難透水層であるAc層で分けられた上位地下水位と下位地下水位の両方を観測できるように2深度の観測孔を準備し、9/11から計測を開始した。グラフには近隣の「片ノ瀬河川水位観測所」「片ノ瀬地下水位観測所」の観測 グラフを併記した。
- ・上位地下水は、Ac層の上部に常時帯水している。降雨に鋭敏に反応。
- ・下位地下水は、平常時As、Ags層中に存在している。平常時は、河川水位より堤外(R2-No.1)や堤内(R2-No.2)の方が水位標高が高い。 出水時は、河川水位が上昇すると連動してR2-No.1、R2-Npo.2(深)の水位が上昇する。

小州地方整備局 Kyushu Regional Development Bureau

【地下水のイオン分析】

・上位地下水(Asc層中)と下位地下水(As層以深)のイオン形状は、異なっており地下水の供給源に違いがあると判断される。

・主要な帯水層であるAs層から下位、被覆土層(Bc~As~Asc層)は変状区間を含む広域的な範囲においても上下流に連続しており、いわゆる「行き止まり地盤は存在しない」と判断される。広域的な地下水流動は上流から下流に向かう流れとなっているとともに本川水位の上昇により、As層には広域に河川水が供給されることが想定される。

九州地方整備局 Kyushu Regional Development Bureau

【変状した39k600地点の被覆土層の概要(トレンチ掘削結果)】 ・土層は、地表面よりAsc、Ac層からなる。基本的な帯水層はAs層であるが、Asc層内には表面水の浸透や用水の 漏水による宙水を有する。Ac層は植物根による水みちが形成され、宙水がAs層内へ涵養している。

18

【変状した39k600地点周辺の被覆土層の概要】

・39k600地点周辺は明治33年の地形図から桑の植生(文献によると桑の根は地表下3~4mまで広がるといわれている)が確認された地点であることから、トレンチ掘削の調査結果で確認された被覆土層の水みちは、植生の影響を受けている可能性がある。

- 【変状した39k720地点(湧水と僅かな噴砂)の地盤状況(トレンチ掘削結果)】
- ・トレンチ掘削の結果、直径 $\phi=3\sim4$ cmで鉛直に深度3.5mまで連続する空洞等が確認された。
- ・39k600地点と同様、過去に桑の植生が確認された地点であることから、植生の影響を受けている可能性がある。
- この地点はH27年度に実施したスウェーデン式サウンディング試験の調査箇所に近似しており、調査跡の影響の可能性も考えられる。

39k720測線のトレンチ掘削地点(※復旧後の状況写真)

39k720測線のトレンチ掘削結果

自噴発生箇所の変状メカニズム(39k600地点)

- ・被覆土層(Asc層、Ac層)下面に埋没微地形の影響による凹みが存在する。被覆土層は不均質である。
- ・川表、川裏及び上流からの浸透水による浸潤線の発達に伴い、被覆土層下面の凹み部に閉鎖された不飽和領域が形成されたと 推定する。
- ・浸潤線の発達に伴い、閉鎖された不飽和領域内の間隙空気の圧力が高まり、不均質な被覆土層内の水みちを通して自噴。自噴に伴う攪乱によって自噴孔が拡大したと推定する。

39k600地点の浸透流解析結果(変状時外力による検討)

・変状時外力に対して浸透流解析を実施した結果、堤内側法尻部の局所動水勾配は、iv=0.030<0.5となり、照査基準を満足する。また、堤内側法尻部 でG/W=1.173>1.000と、照査基準を満足する結果となった。被覆土層の不均質性を考慮して水みちを想定した解析を実施した結果、最大流速は 0.008(cm/s)となった。この流速に対して流動しない粒径は0.1mm以上とAs層の約90%を占めることから、継続時間が長かった場合でも土砂の流出は少 なかったと推測され、自噴現象がすぐさま土砂流出を伴うパイピングに移行した可能性は高くないと考えられる。

限界流速を基にした土砂流出に対する照査の補足説明

・限界流速とは、土粒子の安定が失われるときの流速と定義している。

・パイピング現象を土塊の浮き上がりとしてではなく、個々の粒子の移動として評価することを目的に限界流速での照査を実施。

39k600地点の浸透流解析結果(手引きの外力による検討)

「手引き」の外力に対して浸透流解析を実施した結果、堤内側法尻部の局所動水勾配は、iv=0.455<0.5となり、照査基準を満足する。また、堤内側法尻部でG/W=0.956≤1.000となり、照査基準を満足しない。よって、盤膨れに対する強化対策が必要である。なお、すべりについては、堤内地側でFs=1.335>1.320、堤外地側でFs=1.344>1.000と、照査基準を満足する。

噴砂発生箇所の変状メカニズム(39k720地点)

- ・噴砂の発生した堤内側堤防法尻付近には被覆土層がある。この被覆土層は過去の植生(桑畑)の影響を受けていると想定され不 均質であると考えられる。
- ・変状時の地下水流動傾向を確認するために浸透流解析を行った結果、堤内地の盤膨れに対してG/W=1.210>1.000となり照査基準値を満足するが、不均質な被覆土層を考慮して水みちを仮定すると、そこから漏水が発生することが示唆される結果となった。
- ・川表、川裏及び上流からの浸透水による浸潤線が発達し、それに伴い、不均質な被覆土層内の水みちを通して噴砂が発生したと 推定する。

浸潤線の発達に伴い、堤内側法尻部で漏水が発生したイメージ図

39k720地点の浸透流解析結果(変状時外力による検討)

- ・変状時外力に対して浸透流解析を実施した結果、堤内側法尻部の局所動水勾配は、iv=-0.028<0.5となり、照査基準を満足する。また、堤内側法尻 部でG/W=1.210>1.000と、照査基準を満足する結果となった。
- ・トレンチ掘削で確認された空洞部を考慮した解析を実施した結果、最大流速は0.004(cm/s)となった。この流速に対して流動しない粒径は0.04mm以上 とAs層の約90%を占めることから、継続時間が長かった場合でも土砂の流出は少なかったと推測され、噴砂現象がすぐさま多くの土砂流出を伴うパイ ピングに移行した可能性は高くないと考えられる。

3. 変状要因の特定及び変状メカニズムの推定

39k720地点の浸透流解析結果(手引きの外力による検討)

 「手引き」の外力に対して浸透流解析を実施した結果、堤内側法尻部の局所動水勾配は、iv=0.313<0.5となり、照査基準を満足する。また、堤内側 法尻部でG/W=0.985≦1.000と、照査基準を満足しない。よって、盤膨れに対する強化対策が必要である。なお、すべりについては、堤内地側で Fs=1.413>1.320、堤外地側でFs=1.381>1.000と、照査基準を満足する。

噴砂発生箇所の変状メカニズム(39k800地点)

- ・噴砂の発生した堤内側堤防法尻には被覆土層がある。被覆土層厚は下流に比べて薄く、その層厚は1.7mである。
- ・変状時の地下水流動傾向を確認するために浸透流解析を行った結果、堤内地の盤膨れに対してG/W=0.834≦1.000となり、照 査基準値を満足しない結果となる。
- ・川表、川裏及び上流からの浸透水による浸潤線が発達し、それに伴い、最も揚圧力に対して安全性の低い堤防法尻部から噴砂 が発生したと推定する。

浸潤線の発達に伴い、堤内側法尻部で盤膨れが発生したイメージ図

39k800地点の浸透流解析結果(変状時外力による検討)

- ・変状時外力に対して浸透流解析を実施した結果、堤内側法尻部の局所動水勾配は、iv=0.157<0.5となり、照査基準を満足する。また、堤内側法尻部 でG/W=0.834≤1.000と、照査基準を満足しない結果となった。
- ・堤内地の盤膨れによる水みちを想定した解析を実施した結果、最大流速は0.015(cm/s)となった。この流速に対して流動しない粒径は0.13mm以上とAs 層の約70%を占めることから、継続時間が長かった場合でも土砂の流出は少なかったと推測され、噴砂現象がすぐさま多くの土砂流出を伴うパイピン グに移行した可能性は高くないと考えられる。

3. 変状要因の特定及び変状メカニズムの推定

39k800地点の浸透流解析結果(手引きの外力による検討)

「手引き」の外力に対して浸透流解析を実施した結果、堤内側法尻部の局所動水勾配は、iv=0.440<0.5となり、照査基準を満足する。堤内側法尻部 でG/W=0.620≦1.000と、照査基準を満足しない。よって、盤膨れに対する強化対策が必要である。なお、すべりについては、堤内地側でFs=1.686>
 1.320、堤外地側でFs=1.624>1.000と、照査基準を満足する。

まとめ

・①39k600、④39k720、⑤39k800地点の調査・解析による現象の要因・メカニズム分析を行った結果、いずれの地点においても変状につながる 調査地点特有の要因があり、そこに出水による浸潤面の上昇が引き金となって、変状が生じたと推定する。

・いずれの地点においても「手引き」に基づく堤防点検の再評価としては、盤膨れの照査基準値を満足していないため対策が必要。

地点	変状 現象	(a) 調査・解析による変状現象の要因 メカニズム分析	(b)変状時の堤防の 安全性評価	(c)堤防点検の 再評価
39k600	自噴	 ・過去の土地利用による水みちの可能性 ・被覆土層下面の埋没微地形の影響による凹みの存在 ・常時及び出水時ともに、広域的な地下水流動として上流から下流方向への流れが存在。 ・出水時に川表、川裏及び上流からの浸透による浸潤線の発達により、堤体下部に閉鎖された不飽和領域が形成され、不均質な被覆土層の弱部を通して自噴したと推定。 	・基盤の土砂移動は小さく、すぐさま土 砂流出を伴うパイピングに移行した可 能性は高くない。	・盤膨れの照査基準 値を満足しないた め、対策が必要。な お、法すべり、局所 動水勾配の照査基 準値は満足する。
39K600+40 , 60付近	湧水	・堤体はBc、Bcs層の透水性の低い堤体から構成され、河川水 が堤体を通じて漏水している可能性は低い。 ・堤体表面への雨水が法尻に集中して流出したものと推定。	・堤体内に浸潤線が上昇しないため、堤 防からの湧水ではなく、堤体表面付近 を流下して生じた湧水と評価されること から、堤防の安全性に問題が生じるよ うな事象ではない。	·同上
39k720	噴砂	・過去の土地利用及び地質調査跡による水みちの可能性 ・出水時に不均質な被覆土層の弱部を通して噴砂が生じたと推 定。	・基盤の土砂移動は小さく、すぐさま土 砂流出を伴うパイピングに移行した可 能性は高くない。	·同上
39k800	噴砂	・薄い被覆土層が存在する。 ・表層部は現在の土地利用による水みちの可能性。 そこから噴 砂が生じたものと推定。	・G/Wの照査基準値を満足しないことか ら、 ~ に比べて相対的にパイピン グの危険性は高かった。	·同上
39k800+120 付近	噴砂	・被覆土層が存在しない。ただし、表層部は現在の土地利用に より、難透水層と水みちが存在する可能性。そこから噴砂が生 じたものと推定。	·同上	·同上

 ・浸透に対する不安定要因が盤膨れであるため、効果が期待できる対策原理は「被覆土層下面の揚圧力の減圧」である。
 ・これを満足する具体工法としては以下の3工法が挙げられるが、②は施工事例が極めて少なく、洗掘リスクが懸念される。また、③は、施工 事例が少ない点や、長期的な目詰まりが懸念されることから、緊急的に採用可能な工法として、①の川表遮水工法を採用する。
 ①川表遮水工法 * 被覆土層直下の透水層への外水浸透の遮断による揚圧力の減圧
 ③ウェル工法 * 被覆土層直下の透水層の排水による揚圧力の減圧

- ・川表遮水工法として、川表の被覆土(Bcs~Asc~Ac層)及び遮水矢板により外水遮断を行い揚圧力を低減する。
 ・川表被覆土の洗掘による流出リスク懸念、過去に桑畑であり高水敷が不均質土である可能性、また将来計画で断面拡大が予定されている点を勘案し、管理された均質な築堤土により川表盛土を合わせて行う。
- ・39k600付近川裏では、自噴が発生したことを踏まえ、管理された均質な築堤土により川裏盛土を合わせて行う。

39k600地点の浸透流解析結果(両側盛土+川表遮水工法(鋼矢板)) ・「手引き」の外力に対して浸透流解析を実施した結果、堤内側法尻部の局所動水勾配は、iv=0.005<0.5、ih=0.026<0.5となり、照査基準を満足 する。また、堤内側法尻部でG/W=1.483>1.000となり、照査基準を満足する。よって、盤膨れに対する強化対策として有効である。

39k720地点の浸透流解析結果(川表盛土+川表遮水工法(鋼矢板)) ・「手引き」の外力に対して浸透流解析を実施した結果、堤内側法尻部の局所動水勾配は、iv=0.073<0.5、ih=0.107<0.5となり、照査基準を満足 する。また、堤内側法尻部でG/W=1.556>1.000となり、照査基準を満足する。よって、盤膨れに対する強化対策として有効である。

39k800地点の浸透流解析結果(川表盛土+川表遮水工法(鋼矢板)) ・「手引き」の外カに対して浸透流解析を実施した結果、堤内側法尻部の局所動水勾配は、iv=0.023<0.5となり、照査基準を満足する。 また、堤内側法尻部でG/W=1.670>1.000となり、照査基準を満足する。よって、盤膨れに対する強化対策として有効である。

39k900地点の浸透流解析結果(川表盛土+川表遮水工法(鋼矢板)) ・「手引き」の外力に対して浸透流解析を実施した結果、堤内側法尻部の局所動水勾配は、iv=0.059<0.5となり、照査基準を満足する。また、堤内 側法尻部でG/W=1.770>1.000となり、照査基準を満足する。よって、盤膨れに対する強化対策として有効である。

- ・盤膨れ抑制(揚圧力軽減)のために川表に遮水矢板及び管理された均質な築堤土を用いて盛土を行う。
- ・自噴した39k600~39k600+30では管理された均質な築堤土を用いて川裏に盛土を行う。
- ・樋管付近の高水敷については、遮水対策を行う。

対策後も継続的に実施する調査・検討の方針

地下水流動モニタリングの実施

- ・変状メカニズムについては、低い位置にある地下水位が堤外側と堤内側から堤体に向かう浸透流が生じて上昇し、自 噴あるいは噴砂が生じたと推定しており、出水時の地下水流動については出水時を含めた通年で確認することが重要 である。
- ・遮水矢板は地下水流動の主たる方向と概ね平行で地下水流動を大きく妨げることがないと考えられるが、対策後の地下水流動についても、モニタリングを行うことが重要である。

得られた知見

地盤情報の取得

・堤内地盤の被覆土層厚の連続的な調査においては、サウンディング試験単独の土質判別では誤差が生じる可能性に留意し、部分的には簡易サンプリングなどを併用して、より丁寧に土質の目視確認、土質試験を適宜実施することも必要である。

堤防周辺の土地利用経年変化

・植生の違い(深根系or浅根系など)が地盤の均質性の違い(弱部の存在)となることが示唆された。これまでも堤防設計 は、過去の土地利用状況(畑、水田、湿地等)を調査・把握のうえ実施してきたところであるが、今後は同じ土地利用で も植生の違いにも着目して調査を行うことも必要である。

広域的な地下水流動

・洪水時の川裏堤脚付近の地下水は、直近の河川水のほか堤内側からの地下水や上流に位置する近傍河川からの補給地下水など広域的な影響を受けることが示唆された。強化対策の設計においては、洪水時を含めた広域的な地下水流動の把握に努めることも重要である。