阿蘇大橋地区復旧技術検討会
（第5回）

平成29年4月19日（水）
国土交通省 九州地方整備局
阿蘇大橋地区復旧技術検討会（第5回）

目次

<table>
<thead>
<tr>
<th>章目</th>
<th>項目</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>検討会の進め方</td>
<td>1</td>
</tr>
<tr>
<td>1.</td>
<td>進捗状況報告</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>地質調査結果報告</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>欠壊防止対策概要</td>
<td>17</td>
</tr>
<tr>
<td>4.</td>
<td>砂防事業の恒久対策について</td>
<td>24</td>
</tr>
<tr>
<td>5.</td>
<td>復旧ステップ</td>
<td>27</td>
</tr>
</tbody>
</table>
阿蘇大橋地区復旧技術検討会の進め方
＜全体の流れ＞

第1回検討会　H28年5月10日開催
【審議内容】
○復旧手順　○監視観測計画、地質調査計画

第2回検討会　H28年7月12日開催
【審議内容】
○不安定土砂の評価　○復旧ステップ（有人施工着手のための対策）
○不安定土砂の排土計画

第3回検討会　H28年9月15日開催
【審議内容】
○土砂処理対策　○復旧ステップ（有人施工着手の目処）

第4回検討会（H28年12月6日開催）
【審議内容】
○斜面下部における有人施工着手に向けての作業環境確保について
○復旧ステップ　○砂防事業における恒久対策について
【H28年12月26日】
○現地にて有人施工の作業環境完了確認

第5回検討会（H29年4月19日開催）
【審議内容】
☞ 地質調査結果における地質構成について
☞ 欠壊防止対策について
☞ 砂防事業の恒久対策について
1. 進捗状況報告
進捗状況報告

土留盛土上部進入路
H29年4月3日撮影（施工中）

地質調査
H29年1月12日 掘進開始
H29.1.19撮影
(BorNo.1〜3作業状況)

頭部工事用道路
H29年4月3日撮影（施工中）

斜面下部の仮排水路整備
H29年3月24日施工完了
H29.2.3撮影

H29年1月12日 掘進開始

仮排水路
コルゲート管
12月26日に検討会委員による『斜面下部の安全施工に係る作業環境現地確認』を実施。これにより、平成29年1月から斜面下部での有人作業に着手（ステップ2へ移行）。

斜面下部での有人作業に必要な対策

| 土留盛土工 | 落石対策 |
| 緊急的な不安定土砂の除去 | ラウンディング |
| 滑落崖周辺の不安定土砂の崩落、落石対策 |
熊本側ガリー箇所の転石除去	熊本側ガリー侵食箇所の対策
安全性確認	ラウンディング時の落石状況モニタリングの実施
監視体制強化	最新地形での落石シミュレーションの実施
作業中止基準	監視機器の追加設置
維持管理	有人施工時の作業中止基準の設定
	斜面監視員による目視監視
	土留盛土工の堆積土砂の維持管理

12月26日 現地確認の状況

北園委員長のコメント

- 「阿蘇大橋地区復旧技術検討会（第4回）」では、斜面下部での有人施工着手に向けての作業環境確保のための対策を審議し、現場では、年内を目標に実施することとしておりました。
- 今日は、それらの実施状況を（桜井委員とともに）確認してきました。
- 結果は『全ての対策の実施・完了を確認』しました。
- これにより、年明けから有人作業による調査が可能となり道路・鉄道事業の復旧に向けた次のステップに進めると考えています。
～ 監視観測状況（H29.3.30現在）～

・各観測機器において、前回検討会（H28年12月6日）以降からH29年3月30日現在までに有意な変動は見られない。
・H28年12月に追加設置した、ブロック①-2のSH-14,SH-15及びブロック③のSH-16,ブロック外のSH-17の変動はみられない。
・H29年3月2日に南阿蘇村で震度3を観測しているが、この地震による変動は観測されていない。（現地震度計は震度3以下）
・ボーリング孔でのパイプひずみ計、孔内傾斜計は、月変動量（潜在）100μを越えるような累積変動はみられない。
2. 地質調査結果報告
平成28年12月までに斜面崩壊部上部のラウンディング及び土留盛土工が完了し、平成29年1月より国道57号現道部の有人化施工が可能となった。
斜面崩壊部において平成29年1月より地質調査を開始し、現在解析及び設計中。
斜面崩壊の影響により被災前に比べて地形が大きく変化した。

崩壊前地形から約14m程度崩壊して崩土が4m程度堆積

国道57号及びJR豊肥線の崩壊ライン（国道はほぼ崩壊）
地質調査結果報告（測量）

- 斜面崩壊部（約200m）の国道及びJRの被害状況を平面的にみると、大分側の崩壊が大きい。
- 国道57号はほぼ全範囲で10m以上崩壊。その上に崩土が4m程度堆積。
- JR豊肥線は、約6割以上の範囲で10m以上の崩壊。ほぼ全区間で崩土が2〜4m堆積。

【視点①】
- 崩壊15m
- 崩土5m

【視点②】
- JR 5m崩壊:2m崩土
- 国道4m崩壊:1m崩土

【視点③】
- JR 3m崩壊:1m崩土
- 国道15m崩壊:5m崩土

元の国道57号
基面露出部
斜面崩壊部区間で既存道路付近、川側、山側で各2箇所計6箇所でボーリング調査を実施。
A、Bの2側線で斜面崩壊部の地層構成及び地質性状を把握し、地質横断図・地質縦断図を作成。
地質調査結果報告

崩壊前地形より、約14m程度崩壊。その上に熊本地震堆積物が4m程度堆積している。
旧崖錐堆積物（シルト主体）が川側に分布しており、非常に緩く、降雨等による侵食が懸念される。

地質横断図A NO. 18+13（崖陰接部）

崩壊前地形
旧崖錐堆積物
旧崖錐堆積物（シルト主体）
熊本地震後堆積物

【熊本地震後堆積物】
非常に緩く、植物片混入

H29.1.19撮影(BorNo.1～3作業状況)

<table>
<thead>
<tr>
<th>地層名</th>
<th>定数</th>
<th>土質・地質</th>
<th>記事</th>
</tr>
</thead>
<tbody>
<tr>
<td>熊本地震後堆積物</td>
<td></td>
<td>砂質シルト</td>
<td>100〜500mm程度の硬質な安山岩等を混入する砂質シルト。</td>
</tr>
<tr>
<td>旧崖錐堆積物（シルト主体）</td>
<td>T=15N/m，25N/m</td>
<td>シルト主体</td>
<td>時おり10mm程度の鉄を混入する火山灰質シルト～砂質シルトを主体。</td>
</tr>
<tr>
<td>旧崖錐堆積物①（玉石/シルト互層）</td>
<td>T=15N/m，25N/m</td>
<td>玉石重層</td>
<td>全体に約100〜300mm程度の硬質な安山岩質玉石を混入。</td>
</tr>
<tr>
<td>旧崖錐堆積物②（玉石/シルト互層）</td>
<td>T=15N/m，25N/m</td>
<td>玉石重層</td>
<td>全体に約100〜300mm程度の硬質な安山岩質玉石を混入。</td>
</tr>
<tr>
<td>旧崖錐堆積物③（玉石/シルト互層）</td>
<td>T=15N/m，25N/m</td>
<td>玉石重層</td>
<td>全体に約100〜300mm程度の硬質な安山岩質玉石を混入。</td>
</tr>
<tr>
<td>他溶岩岩</td>
<td>T=25N/m，35N/m</td>
<td>角状</td>
<td>玄武岩質のブロック状溶岩。</td>
</tr>
</tbody>
</table>

地質調査結果報告
崩壊前地形より、約15m程度崩壊。その上に熊本地震堆積物が5.0m程度堆積している。
熊本地震堆積物は大分側より厚く、植物片や50cm程度の玉石の混入が大分側より多く確認された。

地質調査結果報告

地質横断図B

【熊本地震後堆積物】
非常に緩く、50cm程度の玉石を含む

H29.1.21撮影

(BorNo.4〜5作業状況)
- 崩壊前地形より約14m〜15m程度道路が崩壊している。
- 崩壊範囲全体(約200m)に、熊本地震堆積物が4.0〜5.0m程度堆積している。

地質図

至 熊本市内
至 大分市内

崩壊道路高
盛土範囲 約L=200m

地質縦断図

地層名	定数	土質・地質	記事
熊本地震後堆積物 | γt=14kN/m³, C=15kN/m², φ=0° | 玉石混じり砂礫 | 100〜500mm程度の硬質な安山岩玉石を混入する砂礫。時おり、崩壊時に取り込んだ植物片を混入。
旧岩堆積物① (シルト主体) | γt=16kN/m³, C=25kN/m², φ=30° | シルト主体 | 時おり10mm程度の礫を混入する火山灰シルト～砂質シルトを主体。
旧岩堆積物② (玉石/シルト互層) | γt=15kN/m³, C=15kN/m², φ=10° | 玉石混じりシルト | 全体に100〜300mm程度の硬質な安山岩玉石を混入、局所的に数cm程度の礫も確認。基質は、10〜30mm程度の角礫を混入する火山灰シルト～砂質シルトを主体。
旧岩堆積物③ (玉石/シルト互層) | γt=15kN/m³, C=83kN/m², φ=16° | 玉石混じりシルト | 全体的に風化を受け岩片状〜短柱状コアを主体、所々で棒状コアとして採取。
赤瀬溶岩 | γt=25kN/m³, C=1500kN/m², φ=30° | 塊状自破砕状 | 玄武岩質なブロック状溶岩。上部には自破砕部を伴う場合がある。塊状部でも亀裂が多く発達。
＜調査結果概要＞

●熊本地震後堆積物は、玉石混り砂礫であり、層厚4〜5mと厚く堆積。N値は0〜2程度。
 ※熊本地震堆積土物の層厚は、試掘の実施によりボーリング結果と検証。
●旧崖錐堆積物（シルト主体）は、大分方面の川側に分布。N値5程度。
●旧崖錐堆積物（シルト/玉石互層）は、山側に分布。層の上部はN値7程度と低い。深度が深くなるとN値50相当の地盤。また、過圧密の状態であり、圧密沈下量は小さいと考えられる。

＜今後の課題＞

●熊本地震後堆積物は、地震後の崩壊土砂であり非常に緩く、降雨による侵食が懸念される不安定な土塊であるため、撤去又は改良が必要である。また、降雨後トラフィカビリティが極端に悪化する。
●旧崖錐堆積物（シルト主体）は、主成分であるシルトは大規模な地盤改良が必要となるケースがある。
●旧崖錐堆積物（シルト/玉石互層上部）は、N値が低いところがある。N値等を確認し構造物の荷重の大きさによっては地盤改良等の検討が必要。
●土砂撤去の際は、熊本地震後堆積物が非常に軟弱であるため、トラフィカビリティを考慮し施工が必要。
 ※試掘の際に、バックホウの進入ができない状況が発生した。
地質調査の今後の進め方

- 崩壊地盤の状況が点的なボーリング調査では、支持地盤となり得る基盤面の範囲を正確に把握できないため以下を実施する。
 - 熊本地震後堆積物を撤去して、基盤となりうる旧崖錐堆積物（シルト／玉石互層）の範囲を正確に調査し、地耐力を把握する。（赤丸①）
 - 熊本地震後堆積物を撤去して、旧崖錐堆積物（シルト主体）との境界を確認し、構造物の構築可能範囲を正確に把握する。（赤丸②）

<table>
<thead>
<tr>
<th>地層名</th>
<th>定数</th>
<th>土質・地質</th>
<th>例</th>
</tr>
</thead>
<tbody>
<tr>
<td>熊本地震後堆積物</td>
<td>γt=14kN/m³，C=15kN/m²，φ=0°</td>
<td>玉石混じり砂礫</td>
<td></td>
</tr>
<tr>
<td>旧崖錐堆積物（シルト主体）</td>
<td>γt=16kN/m³，C=25kN/m²，φ=20°</td>
<td>シルト主体</td>
<td></td>
</tr>
<tr>
<td>旧崖錐堆積物①（玉石／シルト五層）</td>
<td>γt=15kN/m³，C=25kN/m²，φ=30°</td>
<td>玉石混じりシルト</td>
<td></td>
</tr>
<tr>
<td>旧崖錐堆積物②（玉石／シルト五層）</td>
<td>γt=15kN/m³，C=40kN/m²，φ=30°</td>
<td>シルト</td>
<td></td>
</tr>
<tr>
<td>旧崖錐堆積物③（玉石／シルト五層）</td>
<td>γt=15kN/m³，C=83kN/m²，φ=18°</td>
<td>玉石混じりシルト</td>
<td></td>
</tr>
<tr>
<td>赤瀬溶岩</td>
<td>γt=25kN/m³，C=150kN/m²，φ=30°</td>
<td>塩状自凝状</td>
<td></td>
</tr>
</tbody>
</table>

A断面 NO.18+13（崖隣接部）

- 崩壊前地形、道路中心
- 熊本地震後堆積物
- 旧崖錐堆積物（シルト/玉石互層）①
- 旧崖錐堆積物（シルト/玉石互層）②
- 旧崖錐堆積物（シルト/玉石互層）③
熊本地震後堆積物を撤去して、基盤となりうる旧崖錐堆積物（シルト／玉石互層）の範囲を正確に調査し、地耐力を把握する。（赤丸①）
3. 欠壊防止対策概要
欠壊防止対策概要

欠壊防止対策の概要（被災状況写真）

九州地方整備局

至 熊本市内

至 大分市内

熊本側欠壊部 L=140m

斜面崩壊部 L=240m

大分側欠壊部 L=80m

斜面崩壊部

南阿蘇村水道施設

JR豊肥線

黒川

H28.4撮影
欠壊防止対策概要

欠壊防止対策の概要（侵食状況写真）

震災後約11ヶ月が過ぎて崩壊箇所の侵食が進行している

全体的に細粒分が流れ出して礫が目立ち、侵食が進行している

特に崩壊斜面上部からのみずみち部は、侵食が進行している

欠壊防止対策概要
熊本地震による欠壊直後の地形図と最新の地形図を重ねた結果、大分側では降雨等により約1〜3m強の侵食が確認された。

大分側侵食状況
熊本地震による欠壊直後の地形図と最新の地形図を重ねた結果、熊本側では降雨等により約1m程度の侵食が確認された。

熊本側侵食状況
欠壊箇所を含む不安定領域を壁高とした土留め構造物として、鋼管杭土留めにて構築。
追加対策の必要性の有無について今後検討。
当面のすすめ方（案）

H28.12.26
有人施工可能

H29.1.12
地質調査（ボーリング掘進）開始

H29.2.24
地質調査（室内試験含）完了

H29.3月末
概略設計完了

H29.4月末～
欠壊防止対策着手

斜面崩壊部下の堆積土砂撤去着手
4. 砂防事業における恒久対策について
砂防事業における斜面対策の考え方

➤ 復旧・復興に向け『より安全に・より早く』
・ 侵食の拡大防止、施工時の作業リスクを最小限にするため、安全性確保と短期施工が可能な対策工を選定する。
・ 現地条件を踏まえ、過大な仮設備とならないよう施工性に優れる対策工を選定する。

＜主な対策工の基本的な考え方＞

<table>
<thead>
<tr>
<th>現地条件</th>
<th>主な対策工</th>
<th>施工エリア</th>
</tr>
</thead>
<tbody>
<tr>
<td>斜面全体</td>
<td>早期に侵食対策が必要</td>
<td>植生工（植生マット工等）</td>
</tr>
<tr>
<td>崩壊地内</td>
<td>斜面の安定勾配が確保できない</td>
<td>ネット工※+鉄筋挿入工</td>
</tr>
<tr>
<td>● 斜面の安定勾配が確保できない</td>
<td>④0°（1:1.2）以上の急斜面を有する</td>
<td>ネット工※崩壊除去</td>
</tr>
<tr>
<td>● 落石の発生や、崩土の崩落のリスクがある</td>
<td>施工時のリスクを防ぐ</td>
<td>山腹工（柵工）水路工</td>
</tr>
<tr>
<td>● 雨水等の表面水による洗掘が予想される</td>
<td>緩斜面でリスクが低い</td>
<td></td>
</tr>
<tr>
<td>崩壊地外</td>
<td>凸地形を形成する緩み土塊</td>
<td>排土工アンカーア工</td>
</tr>
</tbody>
</table>

※現地条件を踏まえて法枠工等の対策工を選定することも想定
砂防事業における恒久対策について

地質状況、斜面状況や想定される崩壊の形態から対策施工エリアを区分けして、それぞれに応じた基本的な対策工の考え方を示す。

<table>
<thead>
<tr>
<th>エリア</th>
<th>筒 所 名</th>
<th>斜面勾配（崩壊地内）</th>
<th>対策の考え方</th>
</tr>
</thead>
</table>
| ① | ラウンディング部 | 40°（1:1.2）以下 | 【リスク】侵食、風化、落石
【対策工】植生マット工、ネット工※|
| ② | 崩壊地頭部 | 40°（1:1.2）以下 | 【リスク】侵食、風化、落石、崩土の崩落
【対策工】崩土除去、植生マット工、ネット工※|
| ③ | 崩壊地下部 | 10°~20°の緩斜面 | 【リスク】雨水等による洗掘
【対策工】山腹工（柵工）、植生工、水路工|
| ④ | 熊本側のガリー侵食箇所 | 部分的に40°以上の急斜面 | 【リスク】急斜面、侵食、風化、集水地形
【対策工】ネット工※＋鉄筋挿入工、植生マット工、水路工|
| ⑤ | 大分側凸地形 | 崩壊地外 | 【リスク】凸地形部の斜面、侵食、風化
【対策工】排水工＋アンカーエ工、植生マット工|
| ⑥ | 崩壊部側面部 | 部分的に40°以上の急斜面 | 【リスク】急斜面、侵食、風化
【対策工】ネット工※＋鉄筋挿入工、植生マット工|

※現地条件を踏まえ法枠工等の対策工を選定することも想定

施工エリア
5．復旧ステップ
復旧ステップ

ステップ1
【崩壊エリア内】 無人化施工
①監視装置の整備
②工事用道路（進入路）の整備
③土留 RI 土工（上段、下段）設置
④滑落崖周辺の不安定土砂を緊急的に除去（ラウンディング）⇒有人施工を行うための安全対策

ステップ2
【崩壊エリア内】 斜面下端から順次有人施工
①斜面恒久対策工事

ステップ3
【崩壊エリア内】 有人施工
②仮設道路及び鉄道の調査・検討
③欠壊防止対策
④鉄道の復旧検討

ステップ4
【崩壊エリア外】 有人施工
①熊本側、大分側の工事用道路
②仮設道路整備
③鉄道復旧

復旧に向けて着手
有人施工時の作業中止基準 ［参考］

<table>
<thead>
<tr>
<th>項目</th>
<th>基準値達成の条件</th>
<th>作業中止基準</th>
<th>作業注意基準</th>
<th>長期対応基準（整備体）</th>
<th>作業中止の基準</th>
<th>作業再開の基準</th>
<th>臨時検討会開催</th>
</tr>
</thead>
<tbody>
<tr>
<td>目視</td>
<td>作業時間帯</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>雨量計</td>
<td>1回／1時間</td>
<td>時間雨量が設定値を超えた場合</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>地盤振動計</td>
<td>1回／1時間</td>
<td>地盤振動が設定値を超えた場合</td>
<td>5～10mm／日以上</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>バイブ動力計</td>
<td>1回／1時間</td>
<td>地盤振動が設定値を超えた場合</td>
<td>2,000μ／日以上（農水省）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>対築土工の堆積状況</td>
<td>1回／1日</td>
<td>10mm／日以上</td>
<td>5mm／日以上</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

※計測値としては主に地盤振動計と地盤傾斜計の基準値より判断する。
※基準値については各場所で適用される指針（基準値）に準拠しているため、適用状況により適宜観測体制、基準の見直しを行う。

参考情報

| 監視カメラ | リアルタイム | 対照カメラ | WEB配信
| 端末カメラ | 大分側カメラ | （状況確認し参考情報） | （状況確認し参考情報） |

※計測値としては主に地盤傾斜計と地盤傾斜計の基準値より判断する。
※各基準値については各場所で適用される指針（基準値）に準拠しているため、適用状況により適宜観測体制、基準の見直しを行う。

注: 1. 伸縮計・傾斜計・バイブ動力計の観測値が基準値を超えた場合に、データを回収し分析
注: 2. 対照土工の堆積状況は、上段・下段とともに堆土高3mでの中止基準である。堆土高さに変更が生じた場合は中止基準の確認しを行う。